Benjamin Marchant

À-propos


Ben

Hi, I am Ben. Welcome to my Open Science Notebook that I use to share some visualization tools (mostly based in python) and research studies.

Follow

Contact-me


Log-in to send a nessage

Timeline


MODIS_myd06_collection_6_multilayer_clouds_analysis.ipynb

Jupyter Notebook
14 avril 2020

2008_12_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_11_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_10_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_09_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_08_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_07_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_06_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_05_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_04_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_03_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

2008_02_sample_01_modis_caliop_cldclass_lidar.txt

Data File
13 avril 2020

how_to_colocate_a_MODIS_granule_with_CALIOP_and_CloudSat_using_python.ipynb

Jupyter Notebook
02 avril 2020

How to upload from ICARE a MODIS L2 granule using ftp and python 3 ?

Article
25 novembre 2019

Creative Commons License

Abstract: Example of how to upload with ftp a MODIS granule from ICARE server to my local machine in python 3. [TOC] Import python modules from ftplib import FTP from datetime import date import numpy as np import calendar Granule date & time year = 2008 month = 1 day = 8 hour = 14 minutes = 20 Retrieve count of days: d = date(year, month, day) - date(year, 1, 1) File name file = 'MYD06_L2.A{:04d}{:03d}.{:02d}{:02d}'.format(year,d.days+1,hour,minutes) P ...

The MODIS Cloud Optical and Microphysical Products: Collection 6

PDF File
10 octobre 2019

Abstract: Cloud thermodynamic phase (ice, liquid, undetermined) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical property products such as cloud optical thickness or effective particle radius. Furthermore, it is wel ...

How to restore Aqua MODIS Band 6 missing pixels ?

Article
08 octobre 2019

Creative Commons License

Abstract: Ongoing research ... Goal: To develop an algorithm (in python) based on Gaussian processes to restore the Aqua MODIS Band 6 missing pixels: [images:modis-band6-missing-data-restoration-01;modis-band6-missing-data-restoration-11 dim:1*2 size:80 caption:Aqua MODIS Band 6 missing pixels restoration using Gaussian processes] [TOC] ### Get and plot the data #!/usr/bin/env python from pyhdf.SD import SD, SDC from pylab import figure, cm import numpy as np import matplotlib ...

How to plot MODIS cloud re and tau LUT (Nakajima and King's diagram) using python ?

Article
27 juin 2019

Creative Commons License

Abstract: An example of how to plot MODIS cloud re and tau LUT (Nakajima and King's plot) in python using matplotlib: [TOC] ### How to get and read the Data Note: the LUTs are available [here](https://modis-atmosphere.gsfc.nasa.gov/products/cloud/luts) from pyhdf.SD import SD, SDC from scipy import interpolate import matplotlib.pyplot as plt import numpy as np import math import matplotlib.patches as mpatches import matplotlib.cm as cm file = SD('./MODIS_C6_LUTS/examples/oc ...

mas_emas_oracles.json

Data File
06 juin 2019

How to get all the eMAS granule names from the ORACLES campaign using python 3 ?

Article
31 mai 2019

Creative Commons License

Abstract: Example of how to get all the (MODIS Airborne Simulator) eMAS granule names from the ORACLES campaign using python: [TOC] ### Get ORACLES campaign days First step, let's download, using python, the json file at the root of the eMAS ORACLES campaign available [here](https://ladsweb.modaps.eosdis.nasa.gov/archive/MAS_eMAS/ORACLES/): import urllib.request, json ladsweb_url = 'https://ladsweb.modaps.eosdis.nasa.gov/archive/MAS_eMAS/ORACLES.json' with urllib.request.urlopen(lads ...

viirs_cldprop_l2_001_names_attributes.json

Data File
10 mai 2019

How to create a json file with the names and attributes of a VIIRS L2 CLDPROP netcdf file using python 3 ?

Article
10 mai 2019

Creative Commons License

Abstract: Example of python 3 code to save in a json file the names and attributes of a VIIRS L2 CLDPROP netcdf file. [TOC] Note: the json file created can be found [here](/Files/viirs-cldprop-l2-001-names-attributes/) ### Read the file import netCDF4 import numpy as np import json import pprint f = netCDF4.Dataset('CLDPROP_L2_VIIRS_SNPP.A2018046.1436.001.2019068074007.nc') ### Get all group names group_dic = f.groups.keys() ### Get names and attributes in each group ...

How to download a VIIRS L2 CLDPROP netcdf file from ladsweb using python ?

Article
09 mai 2019

Creative Commons License

Abstract: Example of python script to download on your local machine a VIIRS L2 CLDPROP netcdf granule file from [ladsweb](https://ladsweb.modaps.eosdis.nasa.gov/search/) using python. [TOC] Lets consider the following data for example: year = 2018 month = 2 day = 15 hour = 14 minute = 36 Note: VIIRS granules are every 6 minutes ### Convert day to count of days First step we need to get the count of days: from datetime import date d0 = date(year, 1, 1) d1 = date(year ...

How to read a VIIRS L2 CLDPROP netcdf file using python ?

Article
16 avril 2019

Creative Commons License

Abstract: An example of how to read a VIIRS L2 CLDPROP netcdf file using python 3: [TOC] ### Download a VIIRS L2 CLDPROP netcdf file To download a VIIRS L2 CLDPROP netcdf file, a solution is to go on [LAADS DAAC](https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/CLDPROP_L2_VIIRS_SNPP--5110/2019-01-01/DB/World). Example of granule selected randomly that will be used hereafter: CLDPROP_L2_VIIRS_SNPP.A2019001.1742.001.2019062201640.nc ### Read a netCDF file with python To read the C ...

Sample-homogenization-for-a-year-of-colocated-MODIS-and-2B-CLDCLASS-lidar-data-using-python.py

Source Code
18 mars 2019

Abstract: input files can be downloaded here: - [sample 2008-01](/Files/2008-01-sample-00-modis-caliop-cldclass-lidar/) - [sample 2008-02](/Files/2008-02-sample-00-modis-caliop-cldclass-lidar/) - [sample 2008-03](/Files/2008-03-sample-00-modis-caliop-cldclass-lidar/) - [sample 2008-04](/Files/2008-04-sample-00-modis-caliop-cldclass-lidar/) - [sample 2008-05](/Files/2008-05-sample-00-modis-caliop-cldclass-lidar/) - [sample 2008-06](/Files/2008-06-sample-00-modis-caliop-cldclass-lidar/) - [sample 2 ...

How to homogenize with the latitude a MODIS-2B-CLDCLASS-lidar sample ?

Article
18 mars 2019

Creative Commons License

Abstract: Example of how to homogenize with the latitude a MODIS-2B-CLDCLASS-lidar random sample [TOC] ### Example for a month of data input files can be downloaded here: - [sample 0](/Files/2008-01-sample-00-modis-caliop-cldclass-lidar/) - [sample 1](/Files/2008-01-sample-01-modis-caliop-cldclass-lidar-1/) [images:2008-01-sample-homogenization-02;2008-01-sample-homogenization-06 dim:1*2 size:100 caption:Colocated (1month) MODIS and 2B-CLDCLASS-lidar sample homogenization with python ] ...

Chercher


Catégories


Articles Codes Sources Jupyter Notebooks Fichiers PDF Fichiers de données Bookmarks Commentaires Publications